PRINT DATE: 2/25/2003 DATE/SUPERCEDING: NONE

01/23/03

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- HARDWARE

NUMBER: M0-AG1-M04 -X

SUBSYSTEM NAME: REMOTELY OPERATED FLUID UMBILICAL (ROFU)

REVISION:

PART DATA

PART NAME PART NUMBER VENDOR NAME VENDOR NUMBER

: ROFU V847-544100-001

: ODA CENTERING MECHANISM V751-544200

EXTENDED DESCRIPTION OF PART UNDER ANALYSIS:

ODA CENTERING MECHANISM - ANGULAR

REFERENCE DESIGNATORS: N/A

QUANTITY OF LIKE ITEMS: 1

ONE PER ODA

ONE ODA PER UMBILICAL

FUNCTION:

THREE SPRING LOADED PLUNGERS PROVIDE THE ORBITER DISCONNECT ASSEMBLY WITH (5.5 DEGREE HALF CONE ANGLE) ANGULAR COMPLIANCE ABOUT THE Y/O AXIS OF THE ASSEMBLY.

PRINT DATE: 2/25/2003 DATE/SUPERCEDING: NONE

FAILURE MODES EFFECTS ANALYSIS FMEA -- FAILURE MODE

NUMBER: M0-AG1-M04-01

REVISION#: 01/23/03

SUBSYSTEM NAME: REMOTELY OPERATED FLUID UMBILICAL (ROFU)

LRU: CRITICALITY OF THIS ITEM NAME: ODA CENTERING MECHANISM FAILURE MODE: 2/2

FAILURE MODE:

PHYSICAL BINDING/JAMMING

MISSION PHASE: OO ON-ORBIT

VEHICLE/PAYLOAD/KIT EFFECTIVITY: 102 COLUMBIA

103 DISCOVERY104 ATLANTIS105 ENDEAVOUR

CAUSE:

ADVERSE TOLERANCES/WEAR, CONTAMINATION/FOREIGN OBJECT/DEBRIS, DEFECTIVE PART/MATERIAL OR MANUFACTURING DEFECT, THERMAL DISTORTION, VIBRATION

CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO

REDUNDANCY SCREEN A) N/A

B) N/A

C) N/A

PASS/FAIL RATIONALE:

A)

N/A

B)

N/A

C)

N/A

- FAILURE EFFECTS -

(A) SUBSYSTEM:

LOSS OF FREEDOM OF MOVEMENT DURING THE MATE OPERATION AND LOSS OF STRESS RELIEF AFTER BEING MATED.

(B) INTERFACING SUBSYSTEM(S):

PAGE 3 PRINT DATE: 2/25/2003
DATE/SUPERCEDING: NONE

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- FAILURE MODE

NUMBER: M0-AG1-M04-01

LOSS OF NORMAL MATE/DEMATE OPERATION DURING PAYLOAD RETRIEVAL.

(C) MISSION:

LOSS OF MISSION OBJECTIVE

(D) CREW, VEHICLE, AND ELEMENT(S):

NO EFFECT

SUCCESS PATHS REMAINING AFTER FIRST FAILURE: 0

- TIME TO EFFECT -

REACTION TIME: SECONDS

-DISPOSITION RATIONALE-

(A) DESIGN:

SIMPLE SPRING-LOADED MECHANISM-THREE SIMPLE SPRING-LOADED PLUNGERS EQUALLY SPACED AROUND THE ODM TO PROVIDE CENTERING CAPABILITY.

ALL THE MECHANISM MATERIALS HAVE BEEN CHOSEN FOR HIGH STRENGTH/LOW WEAR CHARACTERISTICS. MECHANISM DESIGNED WITH POSITIVE MARGINS OF SAFETY FOR WORST CASE THERMAL CONDITIONS. ALIGNMENT MECHANISM DESIGNED TO ENSURE PROPER CAPTURE ENVELOPE FOR WORST CASE THERMAL CONDITIONS.

(B) TEST:

QUALIFICATION:

THE ROFU MECHANISM IS CERTIFIED PER CR 60-44-544100-001-C. SYSTEM QUALIFICATION TESTS INCLUDED:

- * VISUAL EXAMINATION TO VERIFY CONFORMANCE TO DRAWINGS, IDENTIFICATION MARKINGS, AND CLEANLINESS.
- * ENVIRONMENTAL TESTS VIBRATION FOR 600 SEC/AXIS (STOWED). VIBRATION FOR 1400 SEC/AXIS (MATED) BY THE ROFU QUALIFICATION TEST. FIVE THERMAL / VACUUM CYCLES.
- * OPERATIONAL LIFE TESTS 500 CYCLES, BY THE ROFU QUALIFICATION TEST, ON ARM AND LATCH MECHANISM.
- * QUALIFICATION ACCEPTANCE TESTS TO CERTIFY MECHANISM FOR FIVE ACCEPTANCE THERMAL AND FIVE ACCEPTANCE VIBRATION TESTS.
- * MAXIMUM DISPLACEMENT TESTS TO VERIFY OPERATIONAL ENVELOPE.
- * LIMIT. LIMIT PLUS LOADS TESTS TO VERIFY STATIC LOADING.
- * ARM AND LATCH STALL LOAD TESTS.

ACCEPTANCE:

PAGE 4 PRINT DATE: 2/25/2003
DATE/SUPERCEDING: NONE

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- FAILURE MODE

NUMBER: M0-AG1-M04-01

THE LATCH MECHANISMS WERE RIGGED PER CONTROLLED SPECIFICATION ML0308-0187, PLUS:

- * ACCEPTANCE VIBRATION RANDOM SPECTRUM 3 MIN/AXIS.
- * ACCEPTANCE THERMAL ONE AND ONE-HALF THERMAL CYCLES.

CERTIFICATION BY ANALYSIS/SIMILARITY:

FACTORS INCLUDE: HUMIDITY, FUNGUS, OZONE, SALTSPRAY, SAND/DUST, ACCELERATION, FACTORS OF SAFETY, HAIL, LIGHTNING, RAIN, SOLAR RADIATION (THERMAL AND NUCLEAR), STORAGE/OPERATING LIFE, METEOROIDS, ACOUSTICS, AND EXPLOSIVE ATMOSPHERE.

GROUND TURNAROUND:

OMRSD - ANY TURNAROUND TEST CHECKOUT TESTING IS ACCOMPLISHED IN ACCORDING WITH OMRSD

(C) INSPECTION:

RECEIVING INSPECTION

MATERIAL AND PROCESS CERTIFICATIONS VERIFIED BY INSPECTION.

CONTAMINATION CONTROL

INSPECTION VERIFIES CLEANLINESS IS MAINTAINED. INSPECTION VERIFIES CORROSION PROTECTION PER MA0608-301.

ASSEMBLY/INSTALLATION

DIMENSIONS OF DETAIL PARTS VERIFIED BY INSPECTION. FASTENER INSTALLATION IS VERIFIED BY INSPECTION. ASSEMBLY AND RIGGING OF CENTERING MECHANISM IS VERIFIED BY INSPECTION.

NONDESTRUCTIVE EVALUATION

PENETRANT INSPECTION OF DETAIL PARTS IS VERIFIED BY INSPECTION.

CRITICAL PROCESSES

APPLICATION OF LB0140-005 DRY FILM LUBRICANT PER MA0112-302 IS VERIFIED BY INSPECTION. HEAT TREATING IS VERIFIED BY INSPECTION.

TESTING

ACCEPTANCE TESTING OF THE CENTERING MECHANISM ASSEMBLY PRIOR TO DELIVERY IS VERIFIED BY INSPECTION PER APPLICABLE PROCEDURES.

HANDLING/PACKAGING

HANDLING AND PACKAGING REQUIREMENTS ARE VERIFIED BY INSPECTION.

(D) FAILURE HISTORY:

CURRENT DATA ON TEST FAILURES, FLIGHT FAILURES, UNEXPLAINED ANOMALIES, AND OTHER FAILURES EXPERIENCED DURING GROUND PROCESSING ACTIVITY CAN BE FOUND IN THE PRACA DATA BASE.

(E) OPERATIONAL USE:

PAGE 5 PRINT DATE: 2/25/2003 DATE/SUPERCEDING: NONE

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- FAILURE MODE NUMBER: M0-AG1-M04- 01

NONE

- APPROVALS -		
S&R ENGINEER.	:A. NGUYEN	:/s/ Anh Nguyen
CARGO/INTEG ITM.	:J. CAPALENI	:/s/ Bob Dueease for
DESIGN ENGINEER	:P. HOE	:/s/ Pham Hoe
SSM	:L. J. SALVADOR	:/s/ Pham Hoe for
NASA/DCE	:B. BROWN	:/s/ B. Brown
MOD	:K. SMITH	:/S/ K. SMITH
SR&QA	:H. MALTBY	:/s/ Harry Maltby
USA/SAM	:R. SMITH	:/s/ R. Smith
USA CARGO/INTG ELEMENT	:S. KUNKEL	:/s/ S. Kunkel
USA ORBITER ELEMENT	:S. LITTLE	:/s/ Suzanne Little